# EMS Tracts in Mathematics

EMS Tracts in Mathematics

This series includes advanced texts and monographs covering all fields in pure and applied mathematics. The Tracts will give a reliable introduction and reference to special fields of current research. The books in the series will in most cases be authored monographs, although edited volumes may be published if appropriate. They are addressed to graduate students seeking access to research topics as well as to the experts in the field working at the frontier of research.

Edited by: Michael Farber (Queen Mary University), Michael Röckner (Universität Bielefeld and Purdue University) and Alexander Varchenko (University of North Carolina at Chapel Hill)

**Published in this series:**

1. P. Daskalopoulos, C. E. Kenig: Degenerate Diffusions
2. K. H. Hofmann, S. A. Morris: The Lie Theory of Connected Pro-Lie Groups
3. R. Meyer: Local and Analytic Cyclic Homology
4. G. Harutyunyan, B.-W. Schulze: Elliptic Mixed, Transmission and Singular Crack Problems
5. G. Feldman: Functional Equations and Characterization Problems on Locally Compact Abelian Groups
6. E. Novak, H. Woźniakowski: Tractability of Multivariate Problems, Volume I: Linear Information
7. H. Triebel: Function Spaces and Wavelets on Domains
8. S. Albeverio et al.: The Statistical Mechanics of Quantum Lattice Systems
9. G. Böckle, R. Pink: Cohomological Theory of Crystals over Function Fields
10. V. Turaev: Homotopy Quantum Field Theory
11. H. Triebel: Bases in Function Spaces, Sampling, Discrepancy, Numerical integration
12. E. Novak, H. Woźniakowski: Tractability of Multivariate Problems, Volume II: Standard Information for Functionals
13. L. Bessières et al.: Geometrisation of 3-Manifolds
14. S. Börm: Efficient Numerical Methods for Non-local Operators
15. R. Brown, Ph. J. Higgins, R. Sivera: Nonabelian Algebraic Topology
16. M. Jarnicki, P. Pflug: Separately Analytic Functions
17. A. Björn, J. Björn: Nonlinear Potential Theory on Metric Spaces
18. E. Novak, H. Woźniakowski: Tractability of Multivariate Problems, Volume III: Standard Information for Operators
19. B. Bojarski et al.: Infinitesimal Geometry of Quasiconformal and Bi-Lipschitz Mappings in the Plane
20. H. Triebel: Local Function Spaces, Heat and Navier–Stokes Equations
21. K. Nipp, D. Stoffer: Invariant Manifolds in Discrete and Continuous Dynamical Systems
22. P. Dehornoy et al.: Foundations of Garside Theory
23. A. C. Ponce: Elliptic PDEs, Measures and Capacities
24. H. Triebel: Hybrid Function Spaces, Heat and Navier-Stokes Equations
25. Y. Cornulier, P. de la Harpe: Metric Geometry of Locally Compact Groups
26. V. Guedj, A. Zeriahi: Degenerate Complex Monge–Ampère Equations
27. N. Raymond: Bound States of the Magnetic Schrödinger Operator
28. A. Henrot, M. Pierre: Shape Variation and Optimization
29. A. V. Kosyak: Regular, Quasi-regular and Induced Representations of Infinite-dimensional Groups
30. V. G. Maz'ya: Boundary Behavior of Solutions to Elliptic Equations in General Domains
31. I. W. Gel'man, V. G. Maz'ya: Estimates for Differential Operators in Half-space
32. S. Kondō: *K*3 Surfaces
33. S. I. Repin, S. A. Sauter: Accuracy of Mathematical Models
34. E. Ya. Khruslov: Homogenized Models of Suspension Dynamics